

Supervised Learning in CINets

Paul Bruhn

The Applied Research Laboratory

The Pennsylvania State University

University Park, PA, U.S.A.

plb123@psu.edu

Dr. Jeffrey Weinschenk

The Applied Research Laboratory

The Pennsylvania State University

University Park, PA, U.S.A.

jjw15@arl.psu.edu

Abstract – Continuous Inference Networks

(CINets), a form of multilayer fuzzy value networks,

allow computation with fuzzy values in concise

structures, are capable of universal function

approximation, and are readily interpretable

through natural language, aiding maintenance,

modification, collaboration, and knowledge sharing.

However CINets have been reliant on Subject

Matter Expertise (SME) and manual tuning to

realize optimal performance, limiting their

applicability. With ONR support
[i]

, ARL has

developed a supervised learning process for CINets,

capable of designing a CINet structure, and of

optimizing an existing CINet structure. The CINet

supervised learning process allows the automated

development of data fusion, classification, and

pattern recognition structures that are interpretable,

modifiable, and concise. Performance of CINets

developed with the supervised learning process is

compared to that of Artificial Neural Network

(ANNs), fuzzy logic rule set, and Bayesian network

approaches.

Keywords: Fuzzy Logic, CINet, Supervised

Learning, Network Learning, Particle Swarm

Optimization, Data Fusion, Classification.

1 Introduction
In the mid 1990s, a flexible data fusion,

pattern recognition and classification tool termed

Continuous Inference Networks (CINets) was

developed at the Applied Research Laboratory at The

Pennsylvania State University (ARL/PSU) to capture

Subject Matter Expert (SME) domain knowledge for

torpedo and anti-torpedo guidance and control

automation.
[1]

 CINets have been used for problems

including shipboard damage control, medical

[i]

 Work sponsored under ONR Contract # N00014-05-G-

0106/0113. Information in this paper does not necessarily

reflect the position or policy of the Office of Naval

Research or the government of the U.S.A.; no official

endorsement should be inferred.

anesthesia monitoring, WMD agent detection, and

condition-based maintenance. CINet structures are

multi-level fuzzy logic networks, and have some

advantages of both fuzzy logic systems and Artificial

Neural Networks (ANNs). Like fuzzy logic systems,

the CINet technique allows the use of human-

intuitive approximate descriptions of a problem

domain to build an effective structure.
[2]

 Like multi-

layer perceptrons, the formalism can be used to build

compact and fast structures, scalable to large Multi-

Input Multi-Output (MIMO) problems, while

avoiding the rule explosion problems that affect

fuzzy rule systems
[3]

CINets also maintain features common to

both fuzzy systems and ANNs. The technique can be

be shown to possess the property of universal

functional approximation. CINet structures are

implemented using a mixture of scalar and vector

mathematics, and so tend to be efficient enough to

use in real-time systems. In the worst case (a CINet

with complete interconnection of all nodes) execution

time is factorial with the number of nodes, but typical

SME-designed CINets are concise networks with

reduced interconnections, and therefore have

complexity that approaches a linear function of the

number of inputs. Figure 1 below shows the structure

of a section of a CINet classifier for a problem that

will be discussed in sections 2 and 3 of the paper.

Figure 1: Iris Classifier CINet Setosa Subnetwork

 In the past, CINet structures have been

designed and tuned by SMEs using a simulation-

based design process; a labor-intensive process for

14th International Conference on Information Fusion
Chicago, Illinois, USA, July 5-8, 2011

978-0-9824438-3-5 ©2011 ISIF 1423

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Supervised Learning in CINets

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Pennsylvania State University,Applied Research Laboratory,University
Park,PA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 14th International Conference on Information Fusion held in Chicago, IL on 5-8 July
2011. Sponsored in part by Office of Naval Research and U.S. Army Research Laboratory.

14. ABSTRACT
Continuous Inference Networks (CINets), a form of multilayer fuzzy value networks allow computation
with fuzzy values in concise structures, are capable of universal function approximation, and are readily
interpretable through natural language, aiding maintenance modification, collaboration, and knowledge
sharing. However CINets have been reliant on Subject Matter Expertise (SME) and manual tuning to
realize optimal performance, limiting their applicability. With ONR support[i], ARL has developed a
supervised learning process for CINets capable of designing a CINet structure, and of optimizing an
existing CINet structure. The CINet supervised learning process allows the automated development of data
fusion, classification, and pattern recognition structures that are interpretable modifiable, and concise.
Performance of CINets developed with the supervised learning process is compared to that of Artificial
Neural Network (ANNs), fuzzy logic rule set, and Bayesian network approaches.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

most problems of interest. Ad-hoc CINet creation

also requires that an SME have an adequate level of

knowledge to structure a CINet that will perform well

for all variations of the problem domain. By utilizing

machine learning techniques, CINets can be

constructed via a supervised learning approach. With

support from the Office of Naval Research (ONR)

Code 333, ARL/PSU has developed a supervised

learning process to produce CINet objects using

labeled training data. Introduction of supervised

learning for CINets extends their use to a much

broader set of applications: automated network

construction and tuning with labeled data sets, on-

line network adaptation, and knowledge discovery,

all while retaining the intrinsic benefits of the CINet

approach. Section 2 of this paper will describe the

approach used to provide supervised learning for

CINets. Section 3 will compare performance of

CINets developed using the supervised learning

process to CINets developed manually and to other

classification techniques, and section 4 will present

conclusions on the approach.

2 CINet Supervised Learning

Approach
Using supervised learning to both choose the

fuzzy logic operators for the connective nodes and to

set the input weights can greatly reduce the level of

effort required to develop CINets. The supervised

learning process has three stages:

1. Set the dimensions (number of layers and number

of nodes in each layer) of a fully-connected network

2. Optimize the weights and connective fuzzy

operators of the network

3. Remove nodes and edges that do not affect the

CINet ouput (“Pruning”).

The third stage of the process delivers a

concise CINet structure that will require fewer

computational resources in operation, but is also

easier for researchers to study and gain insights into

the problem domain. In cases where an initial

network structure is available (i.e., an SME has

designed a CINet for the problem), the supervised

learning process can be used to optimize the weights

and fuzzy operators within this structure. In this case,

only the second stage of the supervised learning

process is required. However, the third pruning stage

of the process may be able to identify segments of an

SME-designed CINet that are unnecessary. In this

way, the supervised learning process may be able to

add to even the SME’s knowledge of the problem.

Section 2.1 will discuss the significance of weight

values in a CINet, and how the supervised learning

process uses the weights for structural learning and

optimization. Section 2.2 will present the additions to

the CINet methodology necessary to support

supervised learning. Section 2.3 will discuss the

application of the Particle Swarm Optimization

(PSO) algorithm for CINet supervised learning, and

section 2.4 will describe the CINet structural

reduction stage of the supervised learning process.

2.1Weight Values in CINets

CINet structures are directed weighted

graphs, where the nodes are either fuzzy membership

functions or fuzzy logic operators, and the edges are

fuzzy membership values. A CINet is typically

structured as: a set of input sources, a set of

membership functions as the first layer of the

network, and one or more intermediate layers

consisting of a set of connective nodes, producing

one or more output fuzzy values. As an example,

Figure 1 above shows a section of a CINet for the

Fisher iris classification problem. Fuzzy logic

operators can include fuzzy union and intersection

operations (“OR” and “AND”), but negation and M

out of N (“MOON”) operations have been employed.

The CINet technique does not constrain the specific

choice of operator implementation; standard max-min

and product-sum implementations have been used, as

well as others.
[4]

Weights on the input edges are real numbers

in [0 1]. The weights on the input edges to a

connective node represent the relative significance of

the input fuzzy values to the output fuzzy value from

the node. The specific impact of varying an input

weight will depend on the type of fuzzy operator and

on the fuzzy logic implementation chosen. Generally,

a weighted fuzzy union operation will be the fuzzy

union of the intersections of each input value with its

corresponding weight, as diagrammed in Figure 2.

The figure also shows the diagram of a weighted

fuzzy intersection operation, which is the fuzzy

intersection of the unions of its inputs with the

complements of its corresponding weights
[5]

.

Figure 2: Weighted Fuzzy Union and Intersection

Some examples will be used to show how the impacts

of varying the weights on the inputs are dependent on

1424

the choice of fuzzy logic implementations used for

the base intersection and union operators. When

max/min fuzzy logic is chosen, then the weighted

fuzzy intersection operation becomes:

min[max(x1, 1-w1), max(x2, 1-w2)]

and the weighted union becomes:

max[min(x1, w1), min(x2, w2)].

For the weighted intersection operation, this means

that the weight on a given input places a threshold on

how low that input can drive the output; i.e., if an

input has a corresponding weight of 0.3, and all other

inputs are 1.0, then the output will be equal to the

first input unless it is less than 0.3, in which case the

output will equal 0.3. Conversely, for the weighted

union operation, a weight will limit how high the

corresponding input can drive the output of the

operator.

If sum/product fuzzy logic implementations

are used instead of max/min logic, then the

thresholding behavior of the weights will still be

present, but in addition there will be a scaling of the

sensitivity of the output to the corresponding input,

proportional to the weight. For a sum-implemented

union operation, if all inputs but the first are 0.0, then

the output will be the product of the first input by its

corresponding weight. So in that case, if the weight

on the first input is 0.7, then the input will be unable

to drive the output higher than 0.7, but the output will

be proportional to the first input across its entire

range. For all choices of fuzzy logic implementation,

when the weight on an input goes to 0.0, then the

output should be completely independent of that

input, so that the input edge can then be removed

from a CINet graph without affecting the input-

output behavior of that CINet. This is the main

mechanism used for graph structural learning in the

CINet supervised learning process.

2.2 Weighted Fuzzy MOON Operators

While the supervised learning process is

able to specify the structure of a CINet using input

weights, as part of the optimization, the process also

needs to be able to determine the operator type for

the nodes. Fuzzy AND and OR operations are the

two most-frequently used operators in manually

constructed CINets, but the operation of one is

strongly dissimilar from another. Including some

form of weighted fuzzy operator with intermediate

operation between a fuzzy AND and an OR would

lead to a more finely graduated solution space for the

optimization algorithm. This in turn should improve

the search performance of non-exhaustive search

algorithms.

Fuzzy logic systems researchers have

previously identified connective operators that offer

intermediate behavior between a fuzzy OR and a

fuzzy AND operation.
[6]

 Logical M out of N

(“MofN”) operators are intermediate operations to

crisp logic AND and OR operators. They return

“True” when at least M out of their N inputs are

“True.” When M = 1, they are equal to logical OR

operators, and when M = N, they are equal to logical

ANDs. Logical MofN operators can be composed of

subnetworks solely of logical AND and OR

operators. Fuzzy MOON operations are analogous to

crisp logic MofN , in that when at least M out of their

N inputs are “high,” then their output will also be

“high.” Similar to logical MofN, fuzzy MOON

operations can be composed of subnetworks of fuzzy

OR and fuzzy AND operations. The CINet

supervised learning process requires a particular

formulation of a weighted fuzzy MOON operator as

the connective function for all connective nodes in a

CINet structure:

MOON(inputs,weights,M) = fuzzy OR(ΩM,ΨM),

where

ΩM = fuzzy AND[combination(inputs,M),

combination(weights,M)],

and

ΨM = fuzzy AND[combination(weights,M)].

In the prior equations, a boldface identifier

represents a vector quantity (either a vector of values

or a vector of functions). The combination(X,M)

operation returns a vector of unique sets of M

members of X; e.g., with X=[A,B,C] and M=2, then

combination(X,M) = {[A,B],[B,C],[C,A]}. So, the

weightedMOON is a fuzzyOR of the weighted

fuzzyANDs of the unique combinations of M of the

inputs, with the fuzzyAND results weighted by the

fuzzyANDs of the corresponding unique sets of

weights on the inputs. For use in the CINet

supervised learning process, the weighted fuzzy

MOON operator must simultaneously satisfy three

requirements:

a) weighted fuzzy MOON must equal a weighted

fuzzy OR when M =1

b) weighted fuzzy MOON must equal a weighted

fuzzy AND when M = N

c) weighted fuzzy MOON must be independent of an

input with a corresponding weight of 0.0; e.g.,

MOON([x, y, z], [wx,wy,0.0], 2) =

MOON([x,y],[wx,wy], 2).

For requirements a), b), and c) to be

simultaneously satisfied with the formulation of the

(1)

(2)

(4)

(5)

(6)

1425

weighted MOON given in (3), it is necessary to

explicitly define that a weighted fuzzy AND or OR

operator, with only a single fuzzy membership value

input, will give the input value as the output,

regardless of the weight on that single input. This

constraint is logically consistent with a model where

the weight on an input to a fuzzy operator represents

the relative significance of that input; if an operator

only has a single input, that input is by default the

most significant, and is the only factor determining

the output value of the operation. It must be noted

that, outside of individual input weights being

bounded between [0 1], there are no further

constraints on the individual or collective input

weights of the weighted MOON operator, and they

can be freely set in accord with the SME’s

evaluations of relative significance, or to improve

performance of the CINet. This is a difference from

the constraints on setting weight values in operators

such as the Weighted Modified Hamacher Operator

(WMHO), where input weights are strictly set so that

multi-level fuzzy networks behave identically to

equivalent “flat” n-input single t-norm operations
[7]

.

In addition to ensuring equivalent behavior, WHMO

weights give greater significance to lower-level

inferences with more inputs, but are not freely

selectable by the network designer.

2.3 Design and Optimization of CINets

using Particle Swarm Optimization

Using the weighted MOON operator, the supervised

learning process must set the value of M of each

connective node, and the weight for each input edge

to each connective node. The values for the input

weights are continuous variables in [0 1], but the M

values must be positive integers. Also, for a

particular connective node with N inputs, values of M

> N are not applicable. To avoid implementing a

mixed-integer or hybrid continuous-discrete search

algorithm, a function is developed that maps a

continuous value �� , defined on the interval [0 1],

into the integer M. The mapping to determine M

from �� and N is

M = 1+round[��*(N-1)]

where round(x) is rounding to the nearest integer.

The reverse mapping is

�� = �M − 1N − 1 ,
 > 1
1.0,
 = 1

�	
so a ��of 0.0 corresponds to a fuzzy union operation,

and 1.0 corresponds to a fuzzy intersection operation.

By replacing the M values with continuous values,

the solution space becomes a hypercube with length

0.0 � 1.0 in all dimensions.

The Particle Swarm Optimization (PSO)

algorithm, first published in 1995, is a guided

stochastic search algorithm, popular for its simplicity

and general suitability for a wide range of

optimization problems.
[8]

 For supervised learning for

CINets, each particle is a complete vector of �� and

input weight parameters, specifying a potential

solution CINet. As the PSO algorithm proceeds, the

parameter vector particles should converge towards a

global optimum; i.e. a set of �� and input weight

settings for an optimally performing CINet for the

problem in question.

The user must define the performance

function that the PSO algorithm uses to evaluate the

performance of the particles in each cycle of the

optimization. This means that the CINet supervised

learning process becomes applicable to many types of

pattern recognition or data fusion problems when an

appropriate performance function is selected. An

example candidate performance function for a

regression problem is:

e
-(||Labels(X)-Outputs(X)||)

;

i.e., performance is the e to the negative difference

between the label outputs for examples X and the

CINet outputs for examples X. The performance

approaches 1.0 when the difference between the label

values and the CINet output is small for all examples.

For a classification problem, a possible performance

function is:

#correct_classifications / #examples,

where a classification is correct if the output of the

CINet for the correct class is the highest of all the

CINet outputs for the example. Performance

functions can also be made directly dependent on the

optimization parameters themselves. For example, for

a problem where it is important that the final network

design have as few remaining components as

possible, a performance function that penalizes input

weight parameters not set to 0.0 or 1.0 could be used.

The supervised learning process would then tend to

find optimal solution CINets with only full-weight

input edges or zero-weight edges. The many zero-

weight edges could then be discarded in the reduction

stage.

 The CINet supervised learning process

allows the user to modify the standard PSO

parameters to control PSO discovery and refinement

during optimization. The user is also able to

determine the number of particles to use during an

optimization trial, and the exit conditions that

terminate a given trial. As with any stochastic search

(7)

(8)

(10)

(9)

1426

optimization, the number of iterations necessary to

reach an acceptable optimum cannot be a priori

determined, so PSO trials terminate after some pre-

set cycle count. The user can also set a required

minimum necessary performance level a minimal

level of improvement d necessary to continue more

than P cycles (if after P cycles, the performance of

the global best has not improved by d or greater, then

the trial will terminate), or a minimum allowable

radius of the particles (the trial will end when all of

the particles are within a radius r of each other). All

of the potential exit criteria are available to use

simultaneously.

 One feature of the PSO is that the particles

are not bound to remain within an initial region of the

search space. For many optimization problems, this

can be considered an advantage (the user does not

need to be able to initially determine the region of the

search space in which the global optimum lies), but

for CINet supervised learning, the only valid

solutions are within the hypercube between 0.0 and

1.0 in all directions. On each cycle, any particle that

has moved outside of the hypercube is adjusted to lie

on the point of the surface of the hypercube where it

exited. In an early design of the supervised learning

process, the hypercube surfaces were made “elastic;”

i.e., particles that were returned from outside the

hypercube had their velocities reversed. However,

this caused the motions of the particles within the

search space to be unstable – particles would soon

oscillate from surface to surface, with no discovery of

optima in the interior space. The final version of the

process sets the velocity of errant particles to zero,

which results in better subsequent search of the

interior of the solution space.

2.4 CINet Structure Reduction

Pruning of CINet network components that

make no contribution to the output will result in a

CINet structure closer to the minimal network

necessary to provide correct results. This will

improve the generalization of the resulting CINet to

new input examples, although it will not affect

overtraining during the optimization stage. Because

the MOON operator calculates the fuzzy AND

operator for all unique combinations of M inputs, the

number of suboperators calculated in the weighted

MOON operator will equal 2*[(N-1)!] in the worst

case (when M = ½ N or M = ½(M+1)). This means

that CINets with connective nodes that each have

many input edges will also tend to be

computationally complex. Since the supervised

learning process is initialized to full interconnection

between layers, this in turn means that the time to

complete the optimization phase of the process will

tend to increase factorially with the number of nodes

in each layer. The pruning phase, by eliminating

unnecessary edges, can dramatically improve the

execution time for the final CINet structure; an

advantage for CINets intended for application in real-

time systems. Finally, this reduced structure can also

be more readily studied to gain insights into the

problem domain.

The reduction phase of the CINet supervised

learning process removes three types of components:

1- Input edges with corresponding weights set to

zero.

2- Connective vertices with a single fuzzy input.

3- Vertices, other than output vertices for the CINet

structure, with no output edges (which also removes

all of its input edges).

In the first case, if the connective node that

takes the edge as an input has at least one other input,

then the zero-weight edge is removed from the

network, and the connective node that had the zero-

weight edge as an input has its N value reduced by

one. The strictness value for the node is held

constant, so the M value for the node may or may not

be reduced. In the second case, any connective node

with only a single input edge is removed from the

network. All of the edges that had received the output

of the removed node are instead connected to the

node that was the source of the removed node’s input

edge.

In the third case, any node that is not an

output node for the CINet structure and with no

output edges is removed from the network. It is

possible for dead-end nodes to be created by the

removal of other nodes but remain in the network,

using the current single-pass version of the CINet

reduction algorithm. Multiple passes, or an explicitly

recursive reduction algorithm, would be necessary to

guarantee the removal of all unnecessary network

components. In the case when supervised learning for

CINets is used to tune a structure initially provided

by a SME, that structure may already clearly and

concisely capture the inputs, outputs, and

intermediate properties necessary to provide correct

results for events in the problem domain. When it is

not, the supervised learning process will be able to

prune nodes and edges that prove extraneous when

the CINet is optimized.

3 Performance Comparison
To evaluate the performance of the resulting

CINet structures, the supervised learning process was

applied to develop CINets for a common reference

1427

problem. The Fisher iris classification problem is one

of the seminal studies in multicriteria classification,

and continues to be used as a standard reference

problem in classification.
[9]

 The data set consists of

measurements for 50 samples each from three iris

species; iris setosa, iris versicolor, and iris virginica.

The measurements for each sample are petal length

and width, and sepal length and width. The species’

sample distributions overlap, and there are a few

outlier samples that fall substantially within the

distributions of other species.

So as to help bound the dimensions

specified for the supervised learning process, a CINet

was constructed and tuned by an SME; i.e. the

authors, after studying the Fisher iris data set.

Weighted sum/product operations were used for the

fuzzyOR and fuzzyAND operations:

������
���,�� = 	∏ �1 − �� + �� ∗ ��� �!" ,

and the fuzzyOR formulation:

�����#$��,�� = 	1 − ∏ �1 − �� ∗ ��� �!" .

Figure 1 in Section 1 shows the structure of the iris

setosa-species-specific subnetwork of the SME

CINet. There were identically-structured subnetworks

for the iris versicolor and iris virginica species. The

classification given to an example by the CINet

would be the iris species with the highest output from

its corresponding subnetwork. After four cycles of

manual parameter tuning, performance was 96.0%

correct classifications over all samples.

For training of CINets for the iris

classification problem, a performance function that

emphasized classification was used: a CINet is

considered to have correctly classified a sample if the

network output for that species is greater than the

output for the CINets for either of the other two

species, even if the other outputs are only slightly

less than the output for the correct species. The

performance score over a set of samples is simply

%&'() = *�+. &'(()&,	&-.%%/�/&.,/'*%,',.-	*�+0)('�	%.+1-)%

The data set was randomly partitioned into

evenly sized training and testing sets, with the

proportions of samples from each species preserved

in each set (i.e., both the training and the testing sets

had 25 iris setosa samples, 25 versicolor samples, and

25 virginica samples). Since the iris data set contains

one or two examples for each species that fall far

outside the normal distribution for that species, a

50%/50% partition of the data was chosen to make it

impossible for either subset to be made up entirely of

outlier examples. For each of three different CINet

initializations, 10 independent supervised learning

trials were run, and statistics gathered on training

performance over these trials.

The first evaluation used the domain-expert-

specified baseline iris classifier structure. The second

evaluation used a general network structure with the

same number and arrangement of vertices, but with

full connection between one layer and the next (i.e.

each of the 12 input membership function vertices

was connected to all 6 intermediate vertices, and each

of the intermediate vertices was connected to all

output vertices. The final evaluation used a structure

with each input vertex connected to only two

intermediate vertices, as a middle ground between the

structures used in the 1
st
 and 2

nd
 evaluations. This

third structure is representative of the kinds of

assumptions that a researcher might be able to make

about the associations of input data in a problem

domain, even if they don’t have a sufficient level of

expert knowledge to completely structure a CINet for

the problem. Figure 2 shows the initial network

structure for the final evaluation. All of the structures

were evaluated with 20 particles per trial. The second

and third structures were also evaluated with 50

particles per trial.

Figure 2: CINet Structure for Third Evaluation

Table 1 shows the training performance of

the process in the 3 evaluations. The “Max” and

“Min” rows in table 1 are the maximum and

minimum values over all 10 trials, with performance

values being the best performance on the final cycles

of the independent trials. Trial time statistics are on a

modern dual-core 2.4 GHz desktop processor, with a

single-threaded supervised learning process and 4GB

of RAM available. Table 2 compares the best

achieved classifier performances against other

published methods, including ANNs, Bayesian

networks or fuzzy rule set classifiers.
[10],[11],[12]

 Like

this study, the ANN study uses a 50%/50% partition

of training/testing data, but the Bayesian network

study uses a 90%/10% partition, and the fuzzy rule

set study uses a Leave-One-Out (L1O) (149/1)

partition.

Input Membership Function

Connective Node

(12)

(13)

(11)

1428

Table 1: Iris Problem Training Statistics

Table 2: Maximum Iris Classification Scores for

CINETs and Other Methods

For the first evaluation, the supervisory

learning process achieved performance close to or

surpassing the “manually” constructed CINets on all

trials. In most cases, the process identified an optimal

solution in as few as two iterations, but one trial took

46 iterations. That trial had the highest classification

performance against the training set (98.7%), but

relatively low performance against the test data

(93.3%); i.e. the process had overtrained against the

training set. The process does have a parameter to

stop training when a performance threshold is

reached, but that threshold was set to 100% for all

trials.

The second evaluation experienced far

longer training times, partially due to the higher

number of training parameters, but principally due to

the number of nodes with high numbers of inputs in

the structure. With 20 particles used in training, the

second evaluation produced poor classification scores

from the final CINets. The process was prone to

settling in local optima, such as networks that

correctly classified two of the species, but never

detected the third species. Increasing the number of

particles to 50 enabled the process to adequately

cover the solution space and identify optima on par

with those seen in the first evaluation, with the

tradeoff of longer training times.

The third evaluation had good classification

performance with 20 particles on some trials, but the

range of performances between trials was

significantly larger than for the first evaluation. The

time required to train the CINets was on the order of

that required for the first evaluation. With 50

particles used, the maximum and mean performances

were higher than those of the first evaluation. Figure

3 shows an example of the final optimum CINet

structure after reduction for one of the trials in the

third evaluation.

Figure 3: Reduced CINet Structure for Third

Evaluation

Note the “unsupported” fifth intermediate

node in Figure 3; a weighted MOON operator with

zero weights on all inputs will always produce an

output of zero. In these cases, the reduction stage

replaces the connective node with a constant 0.0

source node. The effect of this constant source node

and the weight on the edge going from it to the

second output node is similar to the bias term on a

node in a multilayer perceptron. Compared to the

SME-provided initial structure used in the first

evaluation, this final structure contains many edges

linking nodes driven by features for one species to

nodes for different species. Since the classification

performance of this optimized network is higher than

that achieved with the SME-designed structure, a

user could study the more-connected structure and

gain insights into the classification problem.

4 Conclusions
ARL/PSU has developed a supervised learning

process to construct and optimize CINet structures

for classification, regression, and data fusion

problems from labeled training data. Through the use

of fuzzy operators that can be read off as natural

language by an observer, human interpretability is

preserved for CINets constructed by the process.

Since the process also includes a reduction stage that

Evaluation 1
st
 2

nd
 3

rd

Parameters 27 99 51

Particle Count 20 20 50 20 50

Score

(%)

Max 97.3 72.0 97.3 96.0 98.7

Min 93.3 54.7 86.7 33.3 93.3

Iteration Max 46 18 100 19 98

Min 22 11 19 11 16

Trial

Time (s)

Max 267 6.01e
3
 1.08e

5
269 3.22e

3

Min 87 1.08e
3

6.32e
3

136 653

Nodes

Reduced

Max 0 0 0 0 0

Min 0 0 0 0 0

Edges

Reduced

Max 7 18 35 19 17

Min 5 8 34 13 16

ANN Bayesian

Network

Fuzzy

Rule

Set

CINET Sup. Learning

1st 2
nd

_50p. 3
rd

_50p.

97.3 95.5 96.7 97.3 97.3 98.7

1429

acts to refine trained CINets into more concise,

minimal structures, resulting CINets are more general

with respect to novel inputs, have reduced

computational complexity, and are even more readily

interpretable. The supervised learning process for

CINets can be used to determine a CINet structure

through training a large, fully connected network, and

then reducing that network by removing components

that have no impact on the CINet output. The process

is also demonstrably useful for setting the parameters

of an SME-designed CINet structure to improve

performance.

Without altering the CINet supervised

learning process, modifying the PSO training

parameters may cause better exploration of the

solution space. The supervised learning process itself

could be improved by a number of means:

1- Training time could be improved by identifying a

different connective node operator that would meet

the requirements in section 2.1, but avoid factorial

scaling of complexity with the number of inputs.

2- Utilize performance functions that explicitly

penalize some of the low-performing suboptimal

solutions, such as making one class “unclassifiable.”

Additionally, concepts from fuzzy logic analysis,

such as vagueness, could be incorporated into

classification performance functions to encourage

greater separation in the CINet outputs, thus making

“no-class” outputs less likely.
[13]

3- Although “canonical” PSO has been seen to have

good general search performance, cooperative

learning PSO training might improve training

performance in solution spaces with a high number of

dimensions, by training subsets of the parameters

independently and then combining the subsets at each

iteration to evaluate overall performance.
[14]

Backpropagation, or other fast optimization

techniques utilizing the error gradient, could replace

PSO in problems where the performance surface has

a small number of optima and no discontinuities.

4- Recursive pruning could guarantee that all

removable components are removed from the final

network of a CINet, guaranteeing maximum

generalizability and interpretability, and minimal

complexity, for a given optimal parameterization.

5- By using a generative network learning approach,

instead of the reductive approach presented here,

CINet training times might be significantly reduced.

Generative approaches start with a small number of

nodes and then add edges and nodes until a sufficient

structure is constructed. As a result, over-connected

nodes (that scale factorially in complexity) could be

avoided, and the total number of nodes would tend to

be smaller during training, linearly reducing

complexity and training time.

References

[1] J. A. Stover, D. L. Hall, R. E. Gibson, “A Fuzzy Logic

Architecture for Autonomous Multisensor Data Fusion,”

IEEE Trans. on Industrial Electronics, Vol. 43, No. 3, June

1996.

[2] J. J. Weinschenk, W. E. Combs, R. J. Marks II,

“Avoidance of rule explosion by mapping fuzzy systems to

a disjunctive rule configuration,” IEEE Int’l Conference on

Fuzzy Systems, St. Louis, MO, pp 43-48, 2003.

[3] J. J. Weinschenk, “Complexity Reduction in Fuzzy

Inference Systems,” Ph.D. Dissertation, University of

Washington, 2005.

[4] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic,

Prentice Hall, NJ, 1995.

[5] C. A. Janes, Weighted Logic Decision Modeling

Theory and Application, M.S. Thesis, The Pennsylvania

State University, 1994.
[6] R. R. Yager, “Families of OWA Operators,” Fuzzy Sets

and Systems, Vol. 59, pp. 125-148, 1993.

[7] U. Scheunert, P. Linder, H. Cramer, “Multi Level

Fusion with Fuzzy Operators using Confidence,” 9th Intl.

Conf. on Information Fusion, Florence, Italy, July 2006
[8] J. Kennedy and R. C. Eberhart, “Particle swarm

optimization,” Proceedings of IEEE International

Conference on Neural Networks, Piscataway, NJ, pp. 1942-

1948, 1995.

[9] R.A. Fisher, "The Use of Multiple Measurements in

Taxonomic Problems," Annals of Eugenics, Vol 7, pp. 179–

188, 1936.

[10] Di Wang, “Fast Constructive-Covering Algorithm for

Neural Networks and its Implement in Classification,”

Applied Soft Computing, Vol. 8, pp. 166-173, 2008.

[11] S. B. Kotsiantis, P. E. Pintelas, “Logitboost of Simple

Bayesian Classifier,” Informatica, Vol. 29, pp. 53-59, 2005.

[12] H. Ishibuchi, T. Nakashima, T. Morisawa, “Voting in

Fuzzy Rule-Based Systems for Pattern Classification

Problems,” Fuzzy Sets and Systems, Vol. 103, pp. 223-238,

1999.

[13] Y. Yuan, H. Zhuang, “A Genetic Algorithm for

Generating Fuzzy Classification Rules,” Fuzzy Sets and

Systems, Vol. 84, pp. 1-19, 1996.
[14] Van Den Bergh, A. P. Engelbrecht, “Cooperative

Learning in Neural Networks Using Particle Swarm

Optimizers,” South African Computer Journal, Vol. 26, pp.

84-90, 2000.

1430

